109. The Electronic Spectrum of Tricyclo[3.3.0.0^{2,6}]octa-3,7-diene

by R. Gleiter and T. Kobayashi

Physikalisch-Chemisches Institut der Universität Basel

(30. III. 71)

Summary. The unusual electronic spectrum of the title compound is shown to be due to the strong interaction between the π -orbitals of the double bonds and the Walsh-orbitals of the four-membered ring.

Recently, *Meinwald & Tsuruta* [1] and also *Zimmermann*, *Robbins & Schantl* [2] prepared the title compound **1** and tricyclo- $[3.3.0.0^{2,6}]$ oct-3-ene (**2**). Both compounds show a remarkable UV.-spectrum for non-conjugated olefins.

For 1, an absorption at 300 nm is reported with a molar extinction coefficient of 190. For 2, the first band is shifted to 250 nm with an extinction coefficient of 150.

To understand the UV.-spectra of 1 and 2 we have used the CNDO/1 method [3]. In this procedure the elements of the *F*-matrix are given by equations (1) and (2).

$$F_{\mu\mu} = U_{\mu\mu} + (P_{AA} - \frac{1}{2} P_{\mu\mu}) \gamma_{AA} + \sum_{B \neq A} (P_{BB} - Z_B) \gamma_{AB}$$
(1)
$$U_{\mu\mu} = -I_{\mu} - (Z_A - 1) \gamma_{AA},$$

where

$$F_{\mu\nu} = \beta_{\mu\nu} - \frac{1}{2} P_{\mu\nu} \gamma_{AB}.$$
⁽²⁾

The parameters used by *Pople, Santry & Segal* [3] were calibrated to reproduce the results of *ab initio* calculations for small molecules. For the rationalisation of UV.-spectra certain changes have to be introduced into the CNDO method.

P.A. Clark & Ragle [4] used Pople's CNDO procedure with different core parameters $U_{\mu\mu}$ and resonance integrals β . Del Bene & Jaffé [5] introduced different β -values for σ - and π -bonds to increase the energy difference between σ - and π -orbitals. They also evaluated the one-centre integrals γ_{AA} empirically and used the extrapolation technique proposed by Pariser & Parr [6] to calculate the two-centre integrals γ_{AB} . D. T. Clark [7] took I_{μ} as the average of the valence-state ionization potentials and the one-centre integrals γ_{AA} , as described by Sichel & Whitehead [8], and calculated the two-centre integrals γ_{AB} according to the procedure described by Ohno [9]. The resonance integrals β were calculated by the Mulliken, Wolfsberg & Helmholz approximation [10]

$$\beta_{\mu\nu} = -0.5 \cdot K \cdot (I_{\mu} + I_{\nu}) \cdot S_{\mu\nu} \tag{3}$$

For K, an empirical constant, the value 0.78 was used. To calculate the overlap integral $S_{\mu\nu}$, *Slater* type orbitals were used with orbital exponents suggested by *Burns* [11].

Our procedure is closely related to that of D. T. Clark, but the empirical constant K (eq. 3) is taken as 1.0, and the orbital exponents are those suggested by *Slater* [12]. This variation of the CNDO/1 method has been tested on a number of smaller molecules and gives satisfactory agreement with the observed UV.-spectra. For the CI treatment only singly excited configurations were used.

Since the geometry of the molecule is not known we assumed D_{2d} and C_{2v} symmetry for 1 and 2, respectively. We choose the following bond lengths for 1: C(3) – C(4) = 1.34 Å, C(1) – C(2) = 1.53 Å, C(2) – C(3) = 1.54 Å, and all C–H = 1.10 Å. The angle between the planes C(1) – C(2) – C(6) and C(1) – C(5) – C(6) was assumed to be 160°. In 2, the C(7) – C(8) distance was taken as 1.54 Å.

The results for 1 and 2 are summarized in the table. For 1, the first two singlet

	transitions	energy (eV)	(nm)	calculated oscillator strength
1	$^{1}E \leftarrow ^{1}A_{1}$	4.23	293.0	0.082
	$^{1}E \leftarrow ^{1}A_{1}$	5.43	228.3	0.196
	$^{1}\Lambda_{2} \leftarrow ^{1}\Lambda_{1}$	5.58	222.1	0.0
2	$^{1}B_{1} \leftarrow ^{1}A_{1}$	4.48	276.7	0.086
	${}^{1}B_{2} \leftarrow {}^{1}A_{1}$	5.89	210.4	0.012
	$^{1}\Lambda_{2}^{} \leftarrow ^{1}\Lambda_{1}^{}$	5.89	210.4	0.0

Calculated singlet transition for 1 and 2 below 6 eV

transitions $({}^{1}E \leftarrow {}^{1}A_{1})$ are allowed. The first involves an $\mathbf{e}(\boldsymbol{\pi})$ - and an $\mathbf{a}_{2}(\boldsymbol{\pi}^{*})$ -orbital, which are respectively raised and lowered in energy because of interaction between the Walsh-type orbitals of the cyclobutane ring [13] and the $\boldsymbol{\pi}$ - and $\boldsymbol{\pi}^{*}$ -orbitals of the ethylene units¹). The second corresponds to excitation from the highest occupied orbital $\mathbf{e}(\boldsymbol{\pi})$ to the orbital $\mathbf{b}_{1}(\boldsymbol{\pi}^{*})$. The qualitative interaction diagram between Walshand $\boldsymbol{\pi}$ -orbitals (fig.) shows that the two perpendicular $\boldsymbol{\pi}$ -systems in 1 and the four Walsh-orbitals of cyclobutane are ideally arranged for interaction. Mixing gives a pair of high lying occupied orbitals (\mathbf{e}) and increases the splitting between the two $\boldsymbol{\pi}^{*}$ orbitals.

For 2, the CNDO-CI calculation predicts three transitions between 200 and 300 nm, of which two are allowed. The first $({}^{1}B_{1} \leftarrow {}^{1}A_{1})$, at 276.7 nm, is essentially a $\pi^{*} \leftarrow \pi$ transition, where the π -orbital is mixed with the high lying *Walsh*-orbital of B_{2} symmetry (see fig.). The second transition ${}^{1}B_{2} \leftarrow {}^{1}A_{1}$ corresponds mainly to excitation from the *Walsh*-orbital \mathbf{b}_{1} to the π^{*} orbital of the olefinic unit (see fig.).

The forbidden ${}^{1}A_{2} \leftarrow {}^{1}A_{1}$ transitions for 1 and 2 (see table) are from a high lying σ -orbital of A_{1} symmetry to the lowest π^{*} -orbital of A_{2} symmetry. According to our CNDO/1 calculations, this σ -orbital lies between the two e-orbitals of 1 and below the **b**₁ orbital of 2 (see fig.). This might be an artefact of the procedure since all current valence-electron methods yield rather high orbital energies for σ levels [14].

This work is part of the project Nr. SR 2. 120. 69 of the Schweizerischer Nationalfonds. We thank SANDOZ AG for computer time. T. Kobayashi expresses his gratitude to CIBA-GEIGY S. A. for a fellowship.

¹) Similar results have been derived by Hoffmann & Davidson, see [13].

Qualitative interaction diagram between the two perpendicular ethylene units and cyclobutane in 1 (left side) and the ethylene part and cyclobutane in 2 (right side)

BIBLIOGRAPHY

- [1] J. Meinwald & H. Tsuruta, J. Amer. chem. Soc. 91, 5877 (1969); 92, 2579 (1970).
- [2] H.E.Zimmermann, J.D. Robbins & J. Schantl, J. Amer. chem. Soc. 91, 5878 (1969).
- [3] J.A. Pople, D. P. Santry & G.A. Segal, J. chem. Physics 43, S 130 (1965); J.A. Pople & G.A. Segal, ibid. 43, S 137 (1965).
- [4] P.A. Clark & J.L. Ragle, J. chem. Physics 46, 4235 (1967).
- [5] J. Del Bene & H. H. Jaffé, J. chem. Physics 48, 1807 (1968) and subsequent papers.
- [6] R. Pariser & R.G. Parr, J. chem. Physics 21, 767 (1953).
- [7] D. T. Clark, Theoret. chim. Acta, 10, 111 (1968).
- [8] J.M. Sichel & M.A. Whitehead, Theoret. chim. Acta 11, 220 (1968).
- [9] K. Ohno, Theoret. chim. Acta 2, 219 (1964).
- [10] R.S.Mulliken, J. chem. Physics 46, 497, 675 (1949); M. Wolfsberg & L. Helmholz, ibid. 20, 837 (1952).
- [11] G. Burns, J. chem. Physics 41, 1521 (1964).
- [12] J.C. Slater, Physic. Rev. 36, 57 (1930).
- [13] L. Salem & J. S. Wright, J. Amer. chem. Soc. 91, 5947 (1969); L. Salem, Chemistry in Britain 5, 449 (1969); R. Hoffmann & R. B. Davidson, to be published.
- [14] H.H. Jaffé, Accounts chem. Res. 2, 136 (1969).